$q$-differential equations with polynomial solutions
نویسندگان
چکیده
منابع مشابه
Polynomial solutions of differential equations
A new approach for investigating polynomial solutions of differential equations is proposed. It is based on elementary linear algebra. Any differential operator of the form L(y) = k=N ∑ k=0 ak(x)y, where ak is a polynomial of degree ≤ k, over an infinite ground field F has all eigenvalues in F in the space of polynomials of degree at most n, for all n. If these eigenvalues are distinct, then th...
متن کاملOn polynomial solutions of differential equations
A general method of obtaining linear differential equations having polynomial solutions is proposed. The method is based on an equivalence of the spectral problem for an element of the universal enveloping algebra of some Lie algebra in the " projectivized " representation possessing an invariant subspace and the spectral problem for a certain linear differential operator with variable coeffici...
متن کاملPolynomial solutions of differential-difference equations
1 We investigate the zeros of polynomial solutions to the differential-difference equation P n+1 (x) = A n (x)P ′ n (x) + B n (x)P n (x), n = 0, 1,. .. where A n and B n are polynomials of degree at most 2 and 1 respectively. We address the question of when the zeros are real and simple and whether the zeros of polynomials of adjacent degree are interlac-ing. Our result holds for general classe...
متن کاملPolynomial Solutions to Constant Coefficient Differential Equations
Let Dx, ... , Dr e C[d/dxx, ... , d/dxn) be constant coefficient differential operators with zero constant term. Let S = {fe C[xx,... , x„]\Dj(f) = 0 for all 1 < j < r) be the space of polynomial solutions to the system of simultaneous differential equations Dj(f) = 0. It is proved that S is a module over 3¡(V), the ring of differential operators on the affine scheme V with coordinate ring C[d/...
متن کاملOn Polynomial Solutions of Linear Partial Differential and (q-)Difference Equations
We prove that the question of whether a given linear partial differential or difference equation with polynomial coefficients has non-zero polynomial solutions is algorithmically undecidable. However, for equations with constant coefficients this question can be decided very easily since such an equation has a non-zero polynomial solution iff its constant term is zero. We give a simple combinat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1967
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1967-0203194-7